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Abstract 

Improve predictive relationships between strong ground shaking and damage in buildings and 

other structures for implementation in probabilistic hazard maps is a priority topic in research on 

Earthquake Effects (EE) set out in Program Announcement G14AS00036 and is the focus of this 

report. Specifically, this study aims to develop a calibration method for broadband synthetic 

ground motion models so that they will produce ground motion time series that will cause similar 

damage in building structures as the recorded ground motions.  

Currently, validation of broadband synthetic ground motion models has been focused on 

comparing the mean and dispersion of ground motion characteristics such as spectral 

acceleration and PGA with recorded data or empirical equations. Very little work has been done 

to compare the effects of synthetic ground motion on building structures to that from recorded 

ground motions. On the other hand, with the advancement of performance based earthquake 

engineering (PBSE) philosophy in the engineering community, there is a strong focus on explicit 

modeling of structural damage and subsequent loss in modern hazard mitigation research (e.g. 

time history response analysis is considered as a valid design option in ASCE7). In this study, 

the research team intended to first develop a way to correlate ground motion spectra shape to 

structural damage in nonlinear systems; then apply a Broadband Spectrum Inversion (BSI) 

approach to “match” existing broadband models to recorded events, so that better similarity can 

be obtained from a building damage perspective. The success of the BSI process was validated 

through comparison of the actual damage generated through nonlinear time history simulation 

using non-linear structural models.  

The work reported in this study is closely related to the effort at USGS to produce better 

quality ground motion models to support hazard mitigation. Through collaborative research, the 

deliverables from this project will be readily implementable to various applications in USGS 

efforts related to synthetic ground motion generation and utilization. In the long run, it is 

expected that the results from the study will have a positive impact on reducing losses caused by 

earthquakes in the United States, particularly for areas where records are scarce. 
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1. Introduction 

Response spectrum is a commonly used characterization metric for ground motions (GM) 

in both seismological and earthquake engineering communities. By definition, response spectrum 

reflects the maximum acceleration or displacement responses of a linear elastic single degree of 

freedom (SDOF) system under a given ground motion’s excitation, essentially quantifying the 

frequency contents of the given ground motion. In spite of some research efforts towards 

nonlinear response spectrum (i.e., Iwan 1980; Riddell 2008; Aydinoğlu 2003), linear response 

spectrum is still widely used by researchers and engineers to evaluate ground motion impact on 

structural systems (i.e., Loth and Baker 2015). Response spectrum does not explicitly include 

time domain information about the ground motions, which may be important for damage 

assessment in nonlinear structural systems. But it has been, to some degree, used by researchers 

as a key metric for evaluating the quality of synthetic motion generation, especially when 

seismologists want to evaluate how close their models are when compared to recorded ground 

motions from past events. The question this study seeks to answer is how much improvement 

one could obtain in regard to accurately simulating seismically induced damage in structural 

systems by matching synthetic ground motion response spectrum to the recorded ground motion. 

And if there is such benefit in match response spectrum in synthetic motion generation, what part 

of the response spectrum one should be focused on matching. 

In structural engineering, structural response to earthquake excitation is more of a practical 

concern. Nowadays there is a need for (performance based seismic design) PBSD using 

advanced structural models, as damage is more of a concern when the design diagram is shifting 

towards resilience. Due to the lack of recorded data, synthetic GM were used in many studies. 

For example, Ellingwood et al. (2007) adopted the synthetic ground motion generated by Wen 

and Wu (2001) to conduct fragility assessment of concrete frames in Mid-America. The validity 

of the spectrum matching process is the presumption for structural analysis with synthetic GMs. 

However, there is still no consensus on whether this presumption holds for nonlinear structural 

systems. For GM with small intensity that does not cause damage (i.e. structures behave 

linearly), it is safe to reach the conclusion that the structural response will match closely if 

spectrum value at the structural natural periods are closely matched. For the GMs that are large 

enough to cause damage, it will still be ideal if a ground motion “damage potential indicator” 

(DPI) can be derived from spectra shape that can provide reasonable correlation to structural 

damage. But since we know linear response spectrum does not contain some information about 

the GM that can influence damage, to what extent this can be done (i.e. using linear spectra to 

derive a damage potential indicator) still remains currently obscure.  

In this study, a Broadband Spectrum Inversion (BSI) approach is developed to calibrate 

an existing broadband model (Hartzell et al. 2005; Rezaeian et al. 2016) to recorded events. The 

objective of the calibration is to find key parameters in the synthetic ground motion model to 

produce similar damage potential to the recorded ground motion. This was done by fitting the 

shape of recorded response spectrum through an inversion process that was embedded in an 

automated program. The BSI process can be flexible in matching different regions of a response 

spectrum, or be programmed to optimize matching through a given functional criteria based on 

the shape and magnitude of the response spectrum. Some insight on how certain characteristics 

of the spectrum can be used for matching GM-induced structural damage between the synthetic 

GM and recorded GM will be needed in order to use BSI to improve damage predictability. 
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Because the ultimate objective of this project is to help support synthetic motion 

generation models to improve their “similarity” to realistic ground motions in term of structural 

damage, a re-constructed research question was proposed as: based on past research on DPI, can 

we construct a Similarity Index (SI) between two given GMs to quantify their damage potential 

difference? A good SI that strongly correlates with GM damage differences will in turn help us 

find ways to “match” GM spectrum to improve damage similarity, which are important to the 

broadband spectral inversion (BSI) process to improve synthetic ground motion models.  

During the period of this research project, the researchers explored different ways to 

construct the SI based on its correlation with structural damage. After a series of trial-and-error 

attempts to construct an optimal SI, a critical period region for spectra shape was identified for 

GMs that strongly correlate with bilinear structural system damage under a given amplitude. A 

circular rule was defined to calculate the optimal period region in response spectrum. This will 

help guide synthetic ground motion generation and parameter match. Finally a group of real and 

synthetic ground motion were used to validate the effectiveness of the method. The research 

work conducted during this process, including failed attempts to generate reasonable SI, is 

summarized in this report for future reference. 

2. Existing study on spectra-based damage potential indicator  

This section summarizes existing studies on GM damage potential considered in this 

project. Note that since this project is only focused on response spectrum, other studies on 

damage potential relationship with non-spectrum GM characteristics (such as time domain 

characteristics) were not included.  

The basic objective of DPI is to develop a quantitative parameter of a ground motion 

history that correlates strongly with the damage it will induce on a structure. In the past, many 

researchers have investigated various ground motion parameters that can potentially be used as 

DPIs. These parameters can be divided into two categories, namely structure-independent and 

structure-dependent DPIs. Structure-independent DPI is derived only from the ground motion 

itself without considering structural properties. Because structural damage is heavily influenced 

by structural parameters, this type of DPIs are not very robust in predicting damage. The 

common structure-independent DPIs can be peak values during the time history such as peak 

ground velocity, peak ground acceleration and peak ground displacement (Akkar and Özen 2005; 

Makris and Black 2004) as well as the time history-related characteristics such as Arias intensity 

(Arias 1970) and earthquake power index Pa (Housner 1975). The compound DPIs combing the 

peak quantity and time history-related quantity were also used (e.g., Fajfar intensity IF (Fajfar et 

al. 1990), Rafael and Jaime Ia, Iv and Id intensity to consider structural energy dissipation 

(Riddell and Garcia 2001), Park characteristic intensity IC (Park et al. 1985), ID index (Iervolino 

et al. 2006)). These structure-independent DPIs did show reasonable level of correlation with 

structural system responses and damage. On the other hand, most of the structure-dependent 

DPIs are mostly the indices derived using target structure’s natural frequency information and 

response spectra of the GM. The mostly-used one is the 5% damped spectral acceleration 

(Sa(T1,5%)) at the first-mode period of a structure (i.e., Vamvatsikos and Cornell 2002; Yin and 

Li 2010; Bradley and Lee 2010; Ellingwood and Kinali 2009). However, when a structure 

vibrates into inelastic behavior, the period of the structure would be lengthened due to the fact 

that the structure softens under stiffness degradation (Baker and Allin Cornell 2005). In order to 

incorporate effect of the period elongation of the structure subjected to earthquakes, a parameter 
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about the response spectrum value at the lengthened period should be added in DPI to predict the 

nonlinear responses of interest. For example, Cordova et al. (2000) combined the spectral values 

at first-mode period (T1) and lengthened period (TL) as: 
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where TL =C×T1 is the lengthened period; C >1 is the coefficient about the period softening, 

quantifying the degree of the structure softening (namely, nonlinearity) under earthquakes. Thus, 

the value of C should be related with intensity level of earthquakes. α is an undetermined 

coefficient  to reflect spectral shape which can be seen as the weighting of the two spectral 

values at T1 and TL (Mehanny 2009). According to the idea of constructing the DPI, Vamvatsikos 

and Cornell (2005) upgraded the DPI as: 
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where the spectral value at first-mode period (T1) is replaced by the one at Ts. The values of Ts 

and TL can be smaller than T1 to consider for the effects of high modes or larger than T1 

according to structural nonlinearity under earthquakes. Such definitions of Ts and TL make the 

DPI more applicable to the tall, long-period structure dominated by higher modes of vibration or 

the structure controlled by strong nonlinearity under earthquake. However, these DPIs only use 

the information of two points in response spectrum, resulting in a lack of the information of 

spectral shape over a period range that the structure will transit through as it softens. In order to 

incorporate information of spectral shape, Bojorquez and Iervolino (2011) introduced a new DPI 

as: 
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Note that this DPI is dimensionless (without spectral amplitude information) and only 

captures the shape of the elastic response spectra. It is a spectral shape indicator between T1 and 

Te. The response spectrum in this period band is expected to exhibit an averagely positive slope 

for DPI>1 while negative for DPI<1. But since this particular DPI does not have the intensity 

information, two GMs of very different intensity can have very close DPIs as long as their 

shapes are similar. The limitation of these existing DPIs presents a challenge to derive 

reasonable similarity index (SI) between two GMs. In this project, the researchers proposed 

modifications to these DPIs and derived SI as the difference in DPIs between two GMs. 
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3. Response spectrum similarity index 

In synthetic GM generation, it is generally believed that good synthetic models can result 

in similarity in response spectrum between the synthetic and real GMs. It is the hope of the 

researchers that these synthetic GMs will also result in similar response in structures, especially 

when the earthquake intensity is large and causing structural damage. For small earthquakes, this 

question is trivial, as matching response spectrum will result in the match of the linear maximum 

responses by definition.  So this study focuses on one key question: What is the criteria of “good 

match” for response spectrum when compare synthetic and recorded GMs if the structural 

damage is of major concern.  

One could argue that if we find a DPI that is good enough, matching that DPI will be a 

good starting point. It is logical except DPI itself (especially spectral value based DPI) does not 

map to structural damage functionally. In another word, none of the existing DPIs correspond to 

structural damage in a deterministic fashion. As a result, there will be a range of performance by 

using different DPIs to predict damage similarity. Nonetheless, DPI provided a way for us to 

construct a quantitative indicator that compares two response spectrum. In this study, we define a 

generalized Similarity Index (SI) using the difference between the DPIs of two GMs (i and j) as: 

 

 
i jSI DPI DPI    (4) 

This SI will be different based on the type of DPI used. We hypothesize that by carefully 

constructing DPIs, the resulted SI will show a strong correlation with structural damage 

similarity, which can be calculated using structural models through nonlinear time history 

analysis. For any given pair of GMs, one can apply them to a structure and calculate the resulting 

damage using time history integration, and at the same time extract an SI value based on their 

response spectrum. The SI and the difference in structural damage can be paired up to seek 

correlation. A “good” SI will be able to help maximize this correlation, and be used to guide the 

BSI process discussed earlier. The process of identifying suitable SI in this project is described in 

the following sections. 

3.1. Subjecting reinforced concrete frames 

In order to calculated real structural damage, a structural system needs to be used. 

Although the scope of the study will be narrowed down if structure-dependent DPIs are found 

later to be more effective in generating good SIs, the research team decided to pursue this 

direction at the beginning of the project. Initially, a three-story reinforced concrete (RC) frame 

was used as the target structure. The finite element of the RC frame was modelled in the previous 

research work in OpenSees (Mazzoni et al. 2006), making this structure a convenient choice to 

investigate the relationship between response spectrum similarity index and structural responses 

(namely, structural damages). The three bays of the frame are 6 m while the height of every story 

is 3 m (which is showed in Fig. 1). The cross section of the columns of the three-story frame is 

500mm×500mm. For the beams of the frame, the cross section is 500mm×250mm. The column 

and beam are established by the ‘beamWithHinges’ element in OpenSees, which means the 

plasticity is accounted for over concentrated hinge lengths at the ends of the element (showed at 

Fig. 2). the length calculation of Lpi and Lpj depends on the length of the element, the diameter 

and the yield strength of the steel reinforcement within (Paulay and Priestley 1992): 
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 0.08 0.022p b yL L d f    (5) 

where L is the length of the element; db is the diameter of the steel bar with yield stress fy. 

 

Fig. 1. Dimension of the RC frame 

 

 

Fig. 2. ‘beamWithHinges’ element model. 

When assessing the damage of a structure under earthquakes, researchers and engineers 

in the field of earthquake engineering often use maximum inter-story drift ratio because of its 

simple definition and strong correlated to observed damage. However, this performance indicator 

only considers the maximum response without taking into account the cumulative damage 

caused by the repeated cyclic loads (Park and Ang 1985). By combining both the maximum and 

cyclic loading damage mechanism, Park and Ang (1985) proposed a model called damage index 

both considering the member damages caused by excessive deformation and repeated cyclic 

loading as following: 
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where δM indicates the maximum deformation under earthquake; δu  and Qy are the calculated 

ultimate deformation and yield strength under monotonic loading, respectively (Calvi et al. 

2003);  

dE is the absorbed hysteretic energy which can be obtained through the rotation of plastic 

hinges 

 of an element. Note that the damage index above is focused on the damage of members (i.e. a 

component level damage index). The damage to a building will be affected by the distribution of 

damaged members within the building (Park et al. 1985). Thus, the overall damage index DT of 

the entire structure (used in the following analysis) was calculated as the weighted sum of the all 

member damage indices. The weighted factor λi is calculated by the ratio of the energies 

absorbed by the i
th

 member and the total energy dissipation: 
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In order to compare the differences of DIi and DIj of the frame building brought by i
th

 and 

j
th

 ground motions (corresponding to the ground motion response spectrum similarity index), the 

formula to describe the differences is introduced: 

 i jDI DI DI  
  (9) 

Fig. 3 shows the time history drift ratios of the RC frame under two different ground 

motions (both from Northridge Earthquake, “cpp” and “jfp” are the station ID and the 

corresponding information is listed in Table 1). The DI under a ground motion is calculated 

through the maximum drift ratio and the cumulative damage. The value of DI is positively 

related with maximum drift ratio but the relation is not constant because the cumulative energy 

dissipation is also consider in DI calculation.  
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Fig. 3. Example of time history drift ratio of the RC frame 

3.2. Spectral amplitude SI to predict ΔDI of the RC frames 

With the difference in DI (ΔDI) calculated following the procedure described in section 

3.1, the research team started to try different SI formulations by using different DPI formulas. 

The ultimate objective is to identify strong correlation with the ΔDI. Firstly, similarity index 

based on spectrum amplitude was explored. Three SIs derived from spectral amplitude were 

investigated. Because the discussion was framed with the intension to use these SIs to guide 

synthetic GM generation, the SIs are calculated between a recorded GM and its synthetic 

counterpart. 
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where the  x

a iS t  means the spectral acceleration value at period ti for one of the 88 ground 

motions while  y

a iS t  indicates the spectral value of one of the remaining of  87 ground motions 

(unit is g); T1 indicates the first mode period of the structure. t is the period needed to be 

determined. The number of n depends on the period bands elected and the period interval. The 

SIamp1 is the normalized difference of two ground motions in terms of spectral acceleration 

among a period range. The SIamp2 is a variation of SIamp1 without normalization. SIamp3 only 

considers two points in their spectra at first-mode period T1 and the other period longer or 

smaller than T1. These three amplitude similarity indices take the amplitude difference at a series 

of periods into account. The responses of a structure can be affected by its higher modes 
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(primarily before damage occurs) and nonlinear yielding behavior, which essentially lengthens 

its effective period as structure yields. This is the main consideration when the SI includes more 

spectra values than just at T1. Apparently, the period ranges in the three amplitude similarity 

indices can include the periods smaller than T1 to account for higher mode effects.  

In order to assess the effectiveness of the proposed SIs, a pool of GMs needs to be used so that 

multiple SI and ΔDI pairs can be generated. At this point, the source of the GMs actually does 

not matter, because the SI should perform (show strong correlation with ΔDI ) for any arbitrary 

GM pairs. The research team has previously generated three groups of synthetic GMs for a pool 

of 22 recorded GMs from Northridge (shown in Table 1). Thus this mixed pool of 88 GMs were 

used in this study as the “testing GM suite”. Within this suite, one can derive the 3828 pairs of 

GMs for generating SI and ΔDI through random combination (88×87/2=3828). Once the 88 GMs 

were applied to the concrete frame through NLTHA using OpenSees, the 3828 sets of ΔDI can 

be readily calculated from model responses. But the calculation of SIs will depend on the period 

range that defines the SIs. The research team conducted extensive sensitivity analysis and 

identified the period range for each SI that maximized the SI- ΔDI correlation (assessed by the 

coefficient of determination, R
2
). The resulting strongest correlation plots are shown in Fig.4 

with the period range parameters given. 

From Fig.4, one can learn that SIamp2 have larger R
2
 against structural responses ΔDI, 

compared with other two SIs. But SIamp2 still has a very large scatter to be qualified as a good 

predictor. For example, when SIamp2=0, the value of ΔDI of the RC frame varies between about -

0.5 and 0.5. This indicates that even if we use BSI to reduce SI to 0, the damage similarity still 

cannot be guaranteed with reasonable accuracy. In another word, the “slope” of the correlation 

plot shown in Fig.4(b) is too high. Additionally, the period range parameters identified here are 

very likely related to the structural properties of the concrete frame used. From this point, the 

research can be conducted in two different directions. First one is to accept the level of scatter 

embedded in SIamp2, and start to conduct sensitivity analysis of how the optimal period range will 

be affected by structural parameters. The second one is to seek additional ways to reduce the 

level of scatter first. The research team understood that the predictability of damage similarity 

using response spectrum similarity (i.e SI) has a limit, because response spectrum does not 

reflect time domain information of the earthquake that may be important to damage. However, 

the team also wanted to dig deeper to identify the full-potential of the SI predictability. With this 

intention in mind, after several meetings, the team assumed that SI formulation with only the 

amplitude component of the spectrum is not enough. Matching response spectrum in terms of 

amplitude (or average amplitude over a period range) does not mean that the segments of the 

response spectra overlap. Fig. 5 shows the different shape (or slope) of two ground motions but 

with SIamp2=0. It was assumed that the situation showed in Fig.5 is a main reason of the large 

scatter of amplitude similarity index (e.g., ΔDI is between -0.5 and 0.5 for the case SIamp2=0 in 

Fig. 4). Thus, the research team took the second pathway to pursue better predictability in SIs 

through introduction of the spectral slope in SI formulation. 

Table 1 Information of 11 Northridge stations 
No. Station Code Location Name Latitude Longitude Site Category 

1 cpp Canoga Park # 53 34.212 -118.605 D 

2 hol Van Nuys Hotel 34.221 -118.471 D 

3 jem Jensen Filter Plant Generator Building 34.313 -118.498 C 

4 jfp Jensen Filter Plant Administration Bl. 34.312 -118.496 C 
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5 nwp Newhall 34.388 -118.533 D 

6 par Pardee 34.435 -118.582 D 

7 rrs Rinaldi Receiving Stan-FF 34.281 -118.479 D 

8 sfp Arleta 34.237 -118.439 D 

9 syf Sylmar County Hospital 34.326 -118.444 CD 

10 van Sepulveda VA Hospital 34.249 -118.478 D 

11 wc1 White Oak Church # 003 34.209 -118.517 D 

 

 

                             (a)                                             (b)                                          (c) 

Fig. 4. Correlation relationship between ΔDI of the RC frame and (a) SIamp1, (b) SIamp2 and (c) 

SIamp3 

 

Fig. 5. Different shape of the x
th

 and y
th

 ground motion response spectrum with SIamp2=0 . 

3.3. Introducing spectral shape to reduce the prediction scatter of the amplitude-only SI  

In order to effectively present the spectrum similarity of ground motions, three SIs about 

the spectral slope difference of ground motions among certain period range were introduced as 

following: 
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where t  is the mean value of the selected period band; t1 is the starting period identified in 

amplitude SI. So, SIslo1 represents the slope difference between record and synthetic spectrum 

across a given period range. SIslo2 is the sum of tangent slope differences with respect to a 

specific starting period point. SIslo3 is the sum of the tangent slope differences with respect to 

each segment in a specific period range (showed in Fig. 6). When the slope similarity index 

approaches zero, the slopes of the ground motions will match closely. These slope SIs do not 

account for the relative amplitude comparison. If only slope SI is used regardless of amplitude 

SI, a segment of the spectra for a certain period band might be parallel (SIslo=0) while the 

amplitude of the spectrum are very different (showed as Fig. 7). It is apparent that the amplitude 

SI and slope SI should be applied together in order to accurately predict structural damage by 

ground motion response spectrum. So in this study, the slope SI is considered for cases (pairs) 

where the amplitude SI is zero. The hypothesis is that by adding the slope information, the 

predictability of the SIs should improve when original amplitude SI cannot help to differentiate 

different cases.  
 

 

Fig. 6. Illustration of SIslo2 and SIslo3. 
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Fig. 7. A segment of the two parallel response spectra with zero slope SI. 

Because former analysis has shown that SIamp2 has a very strong correlation with ΔDI 

(R
2
=0.81), it was adopted as amplitude SI. From Fig. 4(b), one can learn that the scatter of ΔDI 

is large when SIamp2 is close to zero. The data points with SIamp2 close to zero (i.e. GM pairs that 

produced 0 amplitude SI) were selected as a sub-group to investigate whether or not the slope SIs 

can help to reduce the scatter. Fig. 8 illustrates the correlation between ΔDI and there slope 

similarity indices when SIamp2 is close to zero. If the slope SIs can bring new level of insight into 

the process and add predictability, a correlation pattern should emerge. This analysis is simpler 

than the analysis conducted for amplitude SI because now the period range is given (from past 

analysis). It is logical for the amplitude and slope SIs to use the same period range. If it is found 

out that one of the slope SIs can help improve predictability, another sensitivity analysis can be 

conducted to optimize the period range between slope and amplitude SIs. However, from the 

data presented in Fig.8, the three slope SIs are all ineffective in providing useful information to 

reduce the scatter of selected amplitude SI.  

 

                              (a)                                            (b)                                          (c) 

Fig. 8. Correlation between ΔDI and (a) SIslo1, (b) SIslo2 and (c) SIslo3. 
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present better correlation relative to another two amplitude SIs. However, even though SIamp2 can 

capture the general trend in damage similarity, it still has large scatter in the structural damage 

prediction. In order to reduce the prediction scatter, three slope SIs were introduced to 

investigate whether they can provide extra information about damage similarity, but the result 

was negative. The three slope SIs cannot decrease the dispersion for amplitude SI.  

4. Similarity index vector for SDOF bilinear systems 

Through discussions within the research team, it was realized that the RC frame used in 

the first half of the project may be too specific for the purpose of identifying a useful SI. As it is 

clear from the investigation so far that the SI will be structure-dependent, using simpler but more 

generalized nonlinear systems such as a single-degree-of-freedom (SDOF) bilinear oscillator will 

help reduce the complexity on the structure side. This will also help simplify the damage 

calculation, as the ductility of the bilinear system is a simple but widely accepted damage 

indicator. Additionally, learning from the investigation of amplitude and slope SIs, it was 

decided that both the amplitude and slope information should be included when comparing two 

GMs. But it is difficult to combine these two types of similarity indicator algebraically, thus a 

similarity index consisting of two components, i.e. a vector DPI (including components 

representing the spectral amplitude and shape similarity separately) was introduced to investigate 

its correlation with the ductility of SDOF bilinear systems. 

4.1. Bilinear SDOF systems 

A bilinear SDOF systems without strength degradation is one of the simplest nonlinear 

systems that can be related with more complicated structures. It can be defined through four 

parameters: the initial elastic period (T1), the damping ratio (ξ), the hardening ratio (α, defined as 

the post-yielding stiffness divided by the initial stiffness) and a yield displacement coefficient 

(Cy). Cy is a normalized parameter related with the yield displacement and elastic period (Deng 

et al. 2017):  

 
1/

y

y

d
C

mg k
   (16) 

where dy is the yield displacement; m is the mass; k1 is the elastic stiffness; g is the gravity 

acceleration. The hysteretic model of SDOF bilinear system can be seen in Fig.9.  
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Fig. 9. Hysteretic model of the bilinear SDOF system 

4.2. DPI vector 

In order to increase its robustness, a DPI should include both the spectral amplitude and 

spectral shape information. Baker and Cornell (2005; 2006) proposed a vector-valued DPI 

consisting of spectral acceleration and epsilon to predict structural seismic performance. 

Although both the spectral magnitude and spectral shape are reflected in this DPI, the spectral 

shape information is very limited since only the shape information at one point is included. 

Herein, a spectral shape parameter is proposed to be similar as Eq. (17). It is starting at Ts instead 

of T1, which can allow the shape parameter to be involved in the effects of higher mode and 

nonlinearity. Thus, the proposed spectral shape parameter can be formulated as: 
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It is evident that p1 includes the spectral shape information in the period range from the 

starting period Ts and the ending period Te. s means the point number at starting period while e 

indicates the point number at ending period. Apparently, this DPI component does not include 

information about GM intensity. But it is expected that the optimal period range will be 

dependent on GM intensity. To better quantify the interplay between structural nonlinearity and 

seismic intensity, the indicator λ was formulated to reflect intensity information by normalizing 

the spectrum value at the system fundamental period to the yielding intensity: 
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where Sa0(T1) indicates the spectral acceleration at which the ground motion starts to yield the 

structure. When λ≤1, the structure remains linear elastic during the GM excitation. The structure 

will only experience damage if λ>1. This parameter was used as the 2
nd

 component of the DPI 

vector as: 

 

 

 
1 2

1

1
[ , ] ,

e
a i

s a

S T
DPI p p

e s S T


 
   

 


  (19) 

If we use this DPI vector to describe GM spectrum, it can be hypothesized that when the 

two ground motions match well at p1 and p2, the damage of the structure (can be represented by 

ductility of the bilinear system) caused by the two ground motions will be similar. The DPI 

vector proposed here is apparently structure-dependent. Firstly the intensity component is 

defined at the natural frequency of the structure, as well as the yielding intensity (in case of 

bilinear system, it is actually equal to the parameter Cy introduced earlier).  

 
  2

0 1 /
na y yS T d g C 

  (20) 

Secondly, the start and end period values to calculate the shape component is related to 

structural system parameters. Applying this to comparison of two GMs, we hypothesize that for a 

given bilinear system, there is an underling rule to construct the DPI vector so that good 

correlation between DPI and damage difference can be achieved. This hypothesis was 

investigated in the following sections. 

4.3. Earthquake ground motion suite  

In order to find the general rule for constructing DPI vector to obtain optimal damage 

correlation, a suite of earthquake GMs should be applied to various bilinear systems. Recall at 

the beginning of this study, a GM suite of 88 motions was used including recorded and synthetic 

GMs. One concern of the research team was that these GMs are all from one earthquake event 

(Northridge) and thus not general. In order to study the new DPI vector, another set of 102 far-

fault earthquake records selected from FEMA P695 (FEMA-P695 2009) project and an existing 

literature (Medina and Krawinkler 2004) was used. They are all recorded GM from earthquake 

events from 5.8M to 7.6M and different fault mechanisms such as reverse and strike-slip. The 

response spectra spectrum of the selected 102 ground motions are shown in Fig. 10(a). 

Because the DPI vector has two components, the evaluation of the SI becomes 

complicated. Certainly if both DPI components are close, we can conclude that the two GMs are 

very similar. Consider the situation where the intensity components (λ) of the GMs are close, but 

the shape components are different, or verse visa, it is difficult to quantify the SI. One way to 

accomplish this is to add constrain to one of the DPI components when comparing two GMs. For 

example, instead of comparing two GMs that have different intensity and shape component, one 

can scale both GMs to have the same intensity component and study the relationship between the 

shape component similarity and damage similarity calculated from time history simulation. 

Putting this in the context of synthetic GM generation and BSI, it indicates that to better match 

damage potential of a recorded GM, the procedure should match the intensity component first, 
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and then match the shape over a given period range as close as possible. Fig. 10(b) showed an 

example of adding this intensity constrain to the new 102 GM suite, assuming the natural period 

of the structural system is at 0.5 sec.  

 

                              (a)                                                                 (b) 

Fig. 10. 5% damped response spectra of (a) original ground motions and (b) scaled ground 

motions 

 

4.4. Maximizing damage correlations for SDOF bilinear systems 

4.4.1. Circle rule of optimal period range  

Following a similar process as before, the optimal period range for the shape DPI 

component is sought using data generated from the GM suite described above. Note that this was 

done for different intensity levels by scaling the GM suite to different λ values. The coefficient 

of determination (R
2
) was adopted to describe how well a linear relationship is fitted between the 

shape DPI difference and the ductility (damage) difference. Because the rule will also depend on 

structural parameters, different bilinear SDOF systems with ξ=5%, α=0.2, Cy=0.2 and T1=0.5s, 

1.0s, 1.5s were selected to investigate the correlation trends. The 102 ground motions can 

construct 5151 sets of two ground motions and thus produce 5151 comparative pairs of GMs. 

The value of R
2
 were obtained through the correlation analysis between these 5151 data points 

for different structural parameter, value of λ, and a varying period range [Ts, Te]. Fig. 11 shows 

the contour plots of R
2
 for different situations against a Ts-Te space, in which one point represent 

a unique starting periods and ending periods range as long as the point is above the Ts=Te line.  

From the contours, it can be observed that by change the value of [Ts, Te] (moving the point 

within the Ts-Te space), there exists an area in the Ts-Te plot where R
2
 is maximized. This period 

range is considered as the optimal range for the given structural parameters and λ value 

(intensity). It should be noted that there is a fairly large region on the Ts-Te plot that R
2
 is 

generally very close to the maximum value (with negligible, i.e., < 0.1, difference). Therefore 

instead of locating the absolute maximum correlation, any point period band in this area can be 

regarded as a satisfactory period range for constructing the DPI shape component. Based on this 

observation, the researchers started to look for trends in the location of this optimal region as the 

value of λ and structural parameters change. 

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

T (s)

S
a

 (
g

)

102 ground motions

Mean of 102  ground motions

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

T (s)

S
a

 (
g

)

102 scaled ground motions

Mean of 102  scaled ground motions

0.5s



18 

 

 

 

 

Fig. 11. R
2
 contour results for the bilinear SDOF system with T1=0.5 s, 1.0 s and 1.5 s. 

In Fig. 11, one can see that the area with the largest R
2
 is moving up towards to the point 

[Tp, Tp] as intensity level λ is increased for a given system with T1. It indicates that the response 

of the bilinear SDOF system becomes increasingly dominated by its post-yield stiffness (kp) as 

the intensity level gradually increases. In the area with the largest R
2
, a point closer to the 

diagonal line indicates a narrower period range. For BSI or other engineering applications, a 

narrower period range is more preferable as the need for response spectrum matching can be 

reduced. These points are selected and shown in Fig. 12. It can be observed that the distribution 

of these points roughly follow the curve of a circle which has the origin [Tp, T1] and the radius 

Tp-T1. These points also move towards [Tp, Tp] when the intensity level λ gradually increases. 

Therefore, it is proposed that the optimal period range for bilinear system follows a “circle rule” 

on the Ts-Te plot. The location of the optimal period range can be found on the circle, with its 

location dictated by the intensity level λ. If λ=1, the system behaves as linear elastic and the 

optimal period band point locates at the start points of the circle (T1, T1), which is expected since 

the linear system response can be perfectly matched using just one point on the spectrum. As λ 

increases, the system response is increasingly dominated by the nonlinear response and the 

optimal period band point gradually approaches the end point of the circle (Tp, Tp). The circle can 

trace the variation of the optimal period band points with different intensity levels λ, and this 
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phenomena is defined herein as the circle rule. This circle rule can be mathematically formulated 

as: 

 
     

2 22

1 1 1 ,s p e p s e pT T T T T T T T T T      
  (21) 

 
0.5

1pT T 
  (22) 

 

Fig. 12. Illustration of circle rule of optimal period band 

4.4.2. Influence of λ on optimal period band 

Given the circle rule mentioned above, the relation between the λ and the location of 

optimal period range point on the circle is sought through regression analysis. As discussed 

above, the optimal period range point is moving along with the circle curve from the point [T1, 

T1] to [Tp, Tp] with the intensity level λ increasing. Once the starting period Ts is determined, the 

ending period Te of the optimal range can be calculated according to Eq. (21).  According to the 

proposed circle rule and basic structural dynamic, the extreme cases for the relationship between 

Ts and λ can be expressed as: 

 1 1sT T for  
  (23) 

 
infinites pT T for 

  (24) 

Considering the constraints of the two extreme cases, the relationship between Ts and λ 

can be formulated as: 

 
  1

1s p pT T T T    
  (25) 

where β is a variable smaller than 1 and assumed to be related with structural parameters T1, α 

and Cy. Damping ratio is considered as 5% in this study.  

When T1 and α remain unchanged, Cy is positively proportional to the displacement 

demands for a given intensity level λ as following (Deng et al. 2017):  

0 1 2 3 4 5 6
0

1

2

3

4

5

6

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Starting period T
s

=3

=7

=12

 

 

E
n
d
in

g
 p

e
ri
o
d
 T

e

T
1
=0.5 s

T
p
=

-0.5
T

1
=1.12 s

(T
p
,T

p
)

(T
p
,T

1
)

(T
1
,T

1
)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Starting period T
s

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

=12

=7

=3  

 

E
n
d
in

g
 p

e
ri
o
d
 T

e

T
1
=1.0 s

T
p
=

-0.5
T

1
=2.24 s

(T
p
,T

p
)

(T
p
,T

1
)

(T
1
,T

1
)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

=12
=7

=3

 

 

E
n
d
in

g
 p

e
ri
o
d
 T

e

T
1
=1.5 s

T
p
=

-0.5
T

1
=3.35 s

(T
p
,T

p
)

(T
p
,T

1
)

(T
1
,T

1
)

Starting period T
s



20 

 

 

2 1

2 1y y

D D

C C


  (26) 

where D2 is the displacement demand for the system with Cy2 while D1 is the displacement 

demand for the system with Cy1 for a given intensity level λ. Since Cy is positively proportional 

to yield displacement with other structural parameters unchanged (Eq. (16)), Eq. (26) implies 

that the ductility demands are independent of Cy. Thus one can learn that the structural parameter 

Cy will not affect the value of R
2
 when doing the damage correlation analysis as well as the 

variable β in Eq. (25). In order to validate the conclusion about Cy, contours of R
2
 with different 

period bands for different bilinear SDOF systems (α=0.2, ξ=5%, T1=0.5s, and Cy=0.1, 0.2, 0.3) 

are showed in Fig. 13, which illustrates that the contours of R
2
 remain unchanged for different Cy 

values.  

 

Fig. 13 Contours of R
2
 for bilinear systems with Cy=0.1, 0.2, 0.3. 

Through the analysis above, one can eliminate the dependence of β to Cy and can now 

focus on remaining structural parameters T1, and α. In order to investigate how the value of β is 

related with T1, and α, the 5% damped SDOF bilinear systems with T1=0.5 s, 1.0 s and 1.5 s, and 

α=0.05, 0.1, 0.2 are selected. Fig. 14 illustrates that all the SDOF bilinear systems with different 

intensity levels are fit by to the circle rule. The colored areas for each case present the largest R
2
 

under intensity level λ=3, 4…13. Through selecting the intersection points of the areas and the 

circle, a regression analysis about Eq. (25) was conducted to determine the relationship between 

λ and the optimal starting period (showed in Fig. 15). Fig. 15 illustrated that the effects brought 

by the difference of structural parameters will be enlarged with increasing intensity level λ. For 

the systems with short natural periods such as T1=0.5s, the influence of hardening ratio on the 

relationship can be ignored under intensity level λ<15. Additionally, the value of β is 

proportional of the hardening ratio α (e.g., negatively proportional for the system with T1=0.5 s, 

but positively proportional for the systems with T1=1.0 s and 1.5 s). As to the systems with 

different values of structural parameters, a linear interpolation can be adopted to compare the 

response demands caused by different ground motions such as record ground motion and the 

corresponding synthetic ground motion. 
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Fig. 14. Circle rule of SDOF bilinear systems with different structural parameters. 

In the end, the proposed circle rule for constructing the DPI vector to achieve maximum 

damage correlation for a given bilinear system can be summarized mathematically as: 
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  (27) 

According to the above summarized equation, all the parameters needed in the vector-

valued DPI can be calculated for a given bilinear system under a ground motion, in which the 

value of β can be determined by the linear superposition using the Fig.15. If one wants to 

synthetize a ground motion which generates the same response for the given system under a 

natural record, the parameter p1 and p2 in the vector-valued DPI can be the criteria for the 

synthetizing ground motion in terms of response spectrum matching.  
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Fig. 15. Relationship between λ and optimal starting period. 

 

4.5. Potential application to BSI and validation 

The proposed circle rule was calibrated using the 102 GM suite and seems to work quite 

well with bilinear system damage. The research team applied this rule to improve the efficiency 

of the existing BSI procedure and conducted validations with a limited number of simulations.  

BSI is a procedure (Rezaeian et al. 2016; Sun et al. 2015) to improve synthetic GM 

models with the help of known recorded GMs. It is an iterative broadband synthetic GM 

generation program in which the user can apply different matching criteria or constrains to the 

synthetic GM spectrum against the recorded GM spectrum. If the user would like to have 

synthetic models that mimic the damage potential of a recorded earthquake, the circle rule can be 

applied to construct the matching constraints. The existing alternatives of BSI matching criteria 

are quite arbitrary. Sometimes the entire spectrum was matched in an average sense; sometimes 

only a few selected points on the spectrum were matched. 
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According to this circle rule, if the intensity of the recorded GM is given, and the 

structural parameters of the bilinear system are known, the target matching period range for BSI 

can be calculated. Then the BSI can be carried on to first match the spectral amplitude parameter 

and then the shape parameter in the target period range. As an example, a bilinear system with 

T1=0.5s, α=0.1, and ξ=5% was used in this study. Table 2 listed the spectrum matching 

constraints calculated based on the circle rule for 22 records from 11 Northridge stations (Group 

R). Note that this particular bilinear system was selected so that all these 22 GMs will induce 

damage on the system.  

 

Table 2 spectral accelerations and period bands needed to be synthetized for 22 records 

Station/component Sa(0.5s) (g) Ts (s) Te (s) 

cpp-106 0.931 0.65 1.05 

cpp-196 0.738 0.61 0.98 

hol-270 0.788 0.62 1.00 

hol-000 0.704 0.61 0.97 

jem-292 1.416 0.74 1.18 

jem-022 0.680 0.60 0.96 

jfp-292 1.298 0.72 1.15 

jfp-022 0.677 0.60 0.95 

nwp-000 1.645 0.78 1.22 

nwp-090 1.201 0.70 1.13 

par-000 0.876 0.64 1.03 

par-090 0.767 0.62 0.99 

rrs-228 1.775 0.80 1.24 

rrs-318 1.046 0.67 1.08 

sfp-000 0.515 0.57 0.88 

sfp-090 0.616 0.59 0.93 

syf-000 1.963 0.83 1.27 

syf-090 1.340 0.72 1.16 

van-270 1.446 0.74 1.18 

van-000 1.563 0.76 1.21 

wc1-090 0.672 0.60 0.95 

wc1-180 1.378 0.73 1.17 

 

With these constraints identified, two group of synthetic GMs were generated. The first 

group (termed Group S) was generated using BSI procedure constrained by the circle rule period 

ranges. So this group conformed to the circle rule from a spectrum stand point, which should 

translate to similar structural damage (quantified by ductility of the bilinear system). As one can 

see in Table 3, the group S matches the recorded GM in both the value λ and p1. The BSI process 

is quite effective as one can see from Fig.16, the Group S synthetic spectrum fits the recorded 

spectrum very well at the locations indicated by the circle rule. The second group (Group B) was 

constructed from the synthetic ground motions in an earlier BSI attempt without the information 

about the circle rule. The basic spectrum DPI vector components for Group B are also listed in 

Table 3. One can see Group B is not as good as Group S for a match of Group R, if the circle 
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rule matching criteria is used. All three sets of GMs were applied to the bilinear system and the 

resulted ductility values are also listed in Table 3. If the circle rule can help improve damage 

predictability of synthetic GMs through BSI, the resulted ductility difference between Group R 

and B will be greater (statistically) than Group S. 

 

Fig. 16 Response spectra of Van-270 from Group R, Group S and Group B. 

 

Table 3 Comparison between recorded and synthetic ground motions 

Station/component 
Recorded Group R Synthetic Group S Synthetic Group B 

p2 p1 Ductility p2 p1 Ductility p2 p1 Ductility 

cpp-106 4.66 0.537 2.64 4.66 0.54 3.32 4.27 0.788 3.3 

cpp-196 3.69 1 5.49 3.69 0.983 4.35 6.34 0.836 5.54 

hol-270 3.94 0.673 4.18 3.91 0.679 3.06 7.08 0.539 3.73 

hol-000 3.52 0.695 3.44 3.62 0.687 3.15 5.48 0.469 4.33 

jem-292 7.08 0.787 6.89 7.13 0.785 10.67 5.60 0.768 7.43 

jem-022 3.40 1.158 6.6 3.28 1.174 4.21 5.01 0.937 12.15 

jfp-292 6.49 1.285 6.92 6.46 1.294 8.42 6.15 0.599 6.81 

jfp-022 3.38 1.284 15.44 3.50 1.193 19.7 5.71 0.826 11.18 

nwp-000 8.23 0.748 12.69 8.18 0.757 15.74 2.89 1.015 10.76 

nwp-090 6.00 0.626 8.43 5.88 0.655 29.89 4.22 0.79 7.28 

par-000 4.38 1.676 14.87 4.29 1.723 18.52 3.42 1.574 7.57 

par-090 3.83 1.222 7.25 3.97 1.133 6.44 3.43 1.112 8.2 

rrs-228 8.88 1 28.41 8.87 0.996 19.88 5.12 0.59 5.08 

rrs-318 5.23 0.824 8.04 5.12 0.842 8.97 4.22 1.231 7.93 

sfp-000 2.58 1.044 2.33 2.58 1.045 3.34 4.42 1.229 5.94 

sfp-090 3.08 1.099 4.94 3.04 1.114 3.27 3.72 0.999 5.72 

syf-000 9.81 0.458 13.29 10.05 0.452 9.98 7.39 0.776 17.79 

syf-090 6.70 0.579 10.22 6.76 0.58 6.51 6.14 0.822 15.82 

van-270 7.23 0.857 16.21 7.13 0.869 12 5.10 0.693 6.02 

van-000 7.82 0.546 7.03 7.80 0.553 10.61 4.99 1.168 7.58 

wc1-090 3.36 0.657 2.41 3.45 0.66 2.82 4.65 0.713 4.98 

wc1-180 6.89 0.598 5.87 6.94 0.584 6.16 4.34 0.645 4.85 

Fig. 17 shows that the comparison of ductility difference from Group R and S or Group R 

and B. One can also do a t-test on this ductility difference samples between the 2 cases. It was 

concluded that at 95% significance level, the means of these two groups are the same and the 2 

cases are validated to be from a same distribution. Fig.18 shows the comparison of cumulative 

distribution function of the two cases. The almost overlapping curves also means that they have 

the same distribution feature. 
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We conclude that the circle rule does not improve the effectiveness of the ground motion 

synthetizing. One reason might be that the circle rule still has large scatter. The criteria of the 

period band identified is based on the coefficient of determination R
2
, the large value of R

2
 

means the strong correlation between the similarity index and structural damages but not 

necessarily indicate a small dispersion. The other reason might be that the circle rule is proposed 

according to the 102 natural records and it is possibly not applicable for the synthetic ground 

motions. 

 
Fig. 17 Box plot of ductility differences of GroupR-GroupB and GroupR-GroupS. 

 
Fig. 18 CDF of ductility difference of R-S and R-B. 

 

5. Conclusions 

This research project started with an ambitious goal of developing a simple spectrum-

based metric to calibrate synthetic GMs’ damage potential to recorded GMs. The ability to do 

that will enable synthetic GM modelers to improve their model regarding structural damage 
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prediction using a tool (response spectrum) that they are very familiar with. The BSI procedure is 

believed to be a perfect way to combine this new matching guidance information with an 

existing broad-band synthetic GM model. Although it is well-known to the researchers that 

spectrum-matching will not yield a complete match for structural damage, this project seeks to 

advance our knowledge on the relationship between spectral shape and damage potential by 

identifying the key segment and characteristics of the response spectrum critical to the damage 

potential. 

In this study, a DPI vector was formulated for the purpose of comparing the spectrum of 

different GMs. This DPI vector has an intensity component and a shape component. By applying 

a circle rule to this DPI vector, strong correlation between a generalized bilinear system damage 

and the DPI vector can be established. 

The circle rule was applied to a BSI trial using limited number of ground motions. It was 

discovered that the advantage of introducing the circle rule in a BSI process does not 

significantly improve damage prediction accuracy. The potential reasons for this result are: 1) the 

circle rule is a sufficient but not necessary condition for achieving good damage correlation. 

Thus the BSI cases without applying the circle rule are not necessarily worse than the cases in 

which the circle rule was applied; 2) the number of GMs used for BSI validation was too limited 

to reflect the benefit of circle rule. Although the current attempt to apply the circle rule with BSI 

did not yield very satisfactory results, the efficiency of BSI can be used to improve constrains on 

matching without sacrificing damage predictability. 
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